文章

STL 算法

STL 算法

STL 常用算法

  • 算法主要是由头文件 <algorithm> <functional> <numeric> 组成。
  • <algorithm> 是所有 STL 头文件中最大的一个,范围涉及到比较、 交换、查找、遍历操作、复制、修改等等
  • <numeric> 体积很小,只包括几个在序列上面进行简单数学运算的模板函数
  • <functional> 定义了一些模板类,用以声明函数对象。

常用遍历算法

  • for_each //遍历容器
  • transform //搬运容器到另一个容器中

for_each

函数原型:

  • for_each(iterator beg, iterator end, _func); // 遍历算法 遍历容器元素 // beg 开始迭代器 // end 结束迭代器 // _func 函数或者函数对象

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <algorithm>
#include <vector>
//普通函数
void print01(int val) 
{
	cout << val << " ";
}
//函数对象
class print02 
{
 public:
	void operator()(int val) 
	{
		cout << val << " ";
	}
};
//for_each算法基本用法
void test01() {
	vector<int> v;
	for (int i = 0; i < 10; i++) 
	{
		v.push_back(i);
	}

	//遍历算法
	for_each(v.begin(), v.end(), print01);
	cout << endl;

	for_each(v.begin(), v.end(), print02());
	cout << endl;
}

transform 转换

函数原型: transform(iterator beg1, iterator end1, iterator beg2, _func);

  • beg1 源容器开始迭代器
  • end1 源容器结束迭代器
  • beg2 目标容器开始迭代器
  • _func 函数或者函数对象

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#include<vector>
#include<algorithm>
//常用遍历算法  搬运 transform
class TransForm
{
public:
	int operator()(int val)
	{
		return val;
	}

};
class MyPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};
void test01()
{
	vector<int>v;
	for (int i = 0; i < 10; i++)
	{
		v.push_back(i);
	}

	vector<int>vTarget; //目标容器

	vTarget.resize(v.size()); // 目标容器需要提前开辟空间

	transform(v.begin(), v.end(), vTarget.begin(), TransForm());

	for_each(vTarget.begin(), vTarget.end(), MyPrint());
}

常用查找算法

算法简介:

  • find //查找元素
  • find_if //按条件查找元素
  • adjacent_find //查找相邻重复元素
  • binary_search //二分查找法
  • count //统计元素个数
  • count_if //按条件统计元素个数

find

功能描述:

  • 查找指定元素,找到返回指定元素的迭代器,找不到返回结束迭代器 end()

函数原型:

  • find(iterator beg, iterator end, value); // 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置 // beg 开始迭代器 // end 结束迭代器 // value 查找的元素

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <algorithm>
#include <vector>
#include <string>
void test01() {

	vector<int> v;
	for (int i = 0; i < 10; i++) {
		v.push_back(i + 1);
	}
	//查找容器中是否有 5 这个元素
	vector<int>::iterator it = find(v.begin(), v.end(), 5);
	if (it == v.end()) 
	{
		cout << "没有找到!" << endl;
	}
	else 
	{
		cout << "找到:" << *it << endl;
	}
}

class Person {
public:
	Person(string name, int age) 
	{
		this->m_Name = name;
		this->m_Age = age;
	}
	//重载==
	bool operator==(const Person& p) 
	{
		if (this->m_Name == p.m_Name && this->m_Age == p.m_Age) 
		{
			return true;
		}
		return false;
	}

public:
	string m_Name;
	int m_Age;
};

void test02() {

	vector<Person> v;

	//创建数据
	Person p1("aaa", 10);
	Person p2("bbb", 20);
	Person p3("ccc", 30);
	Person p4("ddd", 40);

	v.push_back(p1);
	v.push_back(p2);
	v.push_back(p3);
	v.push_back(p4);

	vector<Person>::iterator it = find(v.begin(), v.end(), p2);
	if (it == v.end()) 
	{
		cout << "没有找到!" << endl;
	}
	else 
	{
		cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl;
	}
}

总结: 利用 find 可以在容器中找指定的元素,返回值是迭代器

find_if

功能描述:

  • 按条件查找元素

函数原型:

  • find_if(iterator beg, iterator end, _Pred); // 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置 // beg 开始迭代器 // end 结束迭代器 // _Pred 函数或者谓词(返回 bool 类型的仿函数)

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#include <algorithm>
#include <vector>
#include <string>

//内置数据类型
class GreaterFive
{
public:
	bool operator()(int val)
	{
		return val > 5;
	}
};

void test01() {

	vector<int> v;
	for (int i = 0; i < 10; i++) {
		v.push_back(i + 1);
	}

	vector<int>::iterator it = find_if(v.begin(), v.end(), GreaterFive());
	if (it == v.end()) {
		cout << "没有找到!" << endl;
	}
	else {
		cout << "找到大于5的数字:" << *it << endl;
	}
}

//自定义数据类型
class Person {
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}
public:
	string m_Name;
	int m_Age;
};

class Greater20
{
public:
	bool operator()(Person &p)
	{
		return p.m_Age > 20;
	}

};

void test02() {

	vector<Person> v;

	//创建数据
	Person p1("aaa", 10);
	Person p2("bbb", 20);
	Person p3("ccc", 30);
	Person p4("ddd", 40);

	v.push_back(p1);
	v.push_back(p2);
	v.push_back(p3);
	v.push_back(p4);

	vector<Person>::iterator it = find_if(v.begin(), v.end(), Greater20());
	if (it == v.end())
	{
		cout << "没有找到!" << endl;
	}
	else
	{
		cout << "找到姓名:" << it->m_Name << " 年龄: " << it->m_Age << endl;
	}
}
int main() {
	//test01();
	test02();
	return 0;
}

总结: find_if 按条件查找使查找更加灵活,提供的仿函数可以改变不同的策略

adjacent_find

功能描述:

  • 查找相邻重复元素

函数原型: adjacent_find(iterator beg, iterator end); // 查找相邻重复元素,返回相邻元素的第一个位置的迭代器 // beg 开始迭代器 // end 结束迭代器

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <algorithm>
#include <vector>
void test01()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(5);
	v.push_back(2);
	v.push_back(4);
	v.push_back(4);
	v.push_back(3);

	//查找相邻重复元素
	vector<int>::iterator it = adjacent_find(v.begin(), v.end());
	if (it == v.end()) {
		cout << "找不到!" << endl;
	}
	else {
		cout << "找到相邻重复元素为:" << *it << endl;
	}
}

binary_search 二分查找

功能描述:

  • 查找指定元素是否存在

函数原型:

  • bool binary_search(iterator beg, iterator end, value); // 查找指定的元素,查到 返回 true 否则 false // 注意: 在无序序列中不可用 // beg 开始迭代器 // end 结束迭代器 // value 查找的元素

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <algorithm>
#include <vector>

void test01()
{
	vector<int>v;

	for (int i = 0; i < 10; i++)
	{
		v.push_back(i);
	}
	//二分查找
	bool ret = binary_search(v.begin(), v.end(),2);
	if (ret)
	{
		cout << "找到了" << endl;
	}
	else
	{
		cout << "未找到" << endl;
	}
}

总结: 二分查找法查找效率很高,值得注意的是查找的容器中元素必须的有序序列

count 按值统计

功能描述:

  • 统计元素个数

函数原型:

  • count(iterator beg, iterator end, value); // 统计元素 value 出现次数 // beg 开始迭代器 // end 结束迭代器 // value 统计的元素

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include <algorithm>
#include <vector>
//内置数据类型
void test01()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(4);
	v.push_back(5);
	v.push_back(3);
	v.push_back(4);
	v.push_back(4);
	int num = count(v.begin(), v.end(), 4);
	cout << "4的个数为: " << num << endl;
}
//自定义数据类型
class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}
	bool operator==(const Person & p)
	{
		if (this->m_Age == p.m_Age)
		{
			return true;
		}
		else
		{
			return false;
		}
	}
	string m_Name;
	int m_Age;
};
void test02()
{
	vector<Person> v;

	Person p1("刘备", 35);
	Person p2("关羽", 35);
	Person p3("张飞", 35);
	Person p4("赵云", 30);
	Person p5("曹操", 25);

	v.push_back(p1);
	v.push_back(p2);
	v.push_back(p3);
	v.push_back(p4);
	v.push_back(p5);
    
    Person p("诸葛亮",35);

	int num = count(v.begin(), v.end(), p);
	cout << "num = " << num << endl;
}
int main() {
	//test01();
	test02();
	return 0;
}

总结: 统计自定义数据类型时候,需要配合重载 operator==

count_if 按条件统计

功能描述:

  • 按条件统计元素个数

函数原型:

  • count_if(iterator beg, iterator end, _Pred); // 按条件统计元素出现次数 // beg 开始迭代器 // end 结束迭代器 // _Pred 谓词

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include <algorithm>
#include <vector>

class Greater4
{
public:
	bool operator()(int val)
	{
		return val >= 4;
	}
};

//内置数据类型
void test01()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(4);
	v.push_back(5);
	v.push_back(3);
	v.push_back(4);
	v.push_back(4);

	int num = count_if(v.begin(), v.end(), Greater4());

	cout << "大于4的个数为: " << num << endl;
}

//自定义数据类型
class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}

	string m_Name;
	int m_Age;
};

class AgeLess35
{
public:
	bool operator()(const Person &p)
	{
		return p.m_Age < 35;
	}
};
void test02()
{
	vector<Person> v;

	Person p1("刘备", 35);
	Person p2("关羽", 35);
	Person p3("张飞", 35);
	Person p4("赵云", 30);
	Person p5("曹操", 25);

	v.push_back(p1);
	v.push_back(p2);
	v.push_back(p3);
	v.push_back(p4);
	v.push_back(p5);

	int num = count_if(v.begin(), v.end(), AgeLess35());
	cout << "小于35岁的个数:" << num << endl;
}
int main() {
	//test01();
	test02();
	return 0;
}

总结: 按值统计用 count,按条件统计用 count_if

常用排序算法

算法简介:

  • sort //对容器内元素进行排序
  • random_shuffle //洗牌 指定范围内的元素随机调整次序
  • merge  // 容器元素合并,并存储到另一容器中
  • reverse // 反转指定范围的元素

sort

功能描述:

  • 对容器内元素进行排序

函数原型:

  • sort(iterator beg, iterator end, _Pred); // 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置 // beg 开始迭代器 // end 结束迭代器 // _Pred 谓词

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <algorithm>
#include <vector>

void myPrint(int val)
{
	cout << val << " ";
}

void test01() {
	vector<int> v;
	v.push_back(10);
	v.push_back(30);
	v.push_back(50);
	v.push_back(20);
	v.push_back(40);

	//sort默认从小到大排序
	sort(v.begin(), v.end());
	for_each(v.begin(), v.end(), myPrint);
	cout << endl;

	//从大到小排序
	sort(v.begin(), v.end(), greater<int>());
	for_each(v.begin(), v.end(), myPrint);
	cout << endl;
}
  • 谓语可以设置排序的规则,谓语可以是内置函数,也可以是 lambda 表达式。
  • 默认是从小到大排序

示例 1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include "SortDemo.h"
#include "vector"
#include <iostream>
#include <algorithm>

void print(const char* tag, const std::vector<int>& values)
{
	std::cout << tag << ": ";
	for (auto val : values)
	{
		std::cout << val << ",";
	}
	std::cout << std::endl;
}

void SortDemo::testSort()
{
	std::vector<int> values = { 3,4,5,1,2,1,3 };
	print("原始数组", values);

	std::sort(values.begin(), values.end());
	print("std::sort数组", values);

	std::cin.get();
}
  • 使用内置函数,添加头文件 functional,使用 std::greater 函数,则会按照从大到小顺序排列
1
2
3
4
5
6
7
8
9
10
11
12
13
#include<iostream>
#include<vector>
#include<algorithm>
#include<functional>

int main()
{
    std::vector<int>  values = {3, 5, 1, 4, 2};             
    std::sort(values.begin(), values.end(),std::greater<int>()); 
    for (int value : values)
    std::cout << value << std::endl; // 5 4 3 2 1
    std::cin.get();
}
  • 使用 lambda 进行灵活排序
1
2
3
4
std::sort(values.begin(), values.end(), [](int a, int b)
    {
            return a < b;
    });

对于已定的传入参数的顺序 [](int a, int b),函数体中如果参数 a 在前面,则返回 true,如果参数 a 在后面则返回 false

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
a < b //返回true,a排在前面。此时为升序排列(如果a小于b,那么a就排在b的前面)
a > b //返回true, a排在前面,此时为降序排列(如果a大于b,那么a就排在b的前面)
#include<iostream>
#include<vector>
#include<algorithm>
#include<functional>

int main()
{
    std::vector<int>  values = {3, 5, 1, 4, 2};          

    std::sort(values.begin(), values.end(), [](int a, int b)
    {
            return a < b;  // 如果a小于b,那么a就排在b的前面。 1 2 3 4 5
    });

    for (int value : values)
    std::cout << value << std::endl;

    std::cin.get();
}

// 如果把1排到最后: 如果a==1,则把它移到后面去,即返回false,不希望它在b前。 如果b==1,我们希望a在前面,要返回true。
#include<iostream>
#include<vector>
#include<algorithm>
#include<functional>

int main()
{
    std::vector<int>  values = {3, 5, 1, 4, 2};          
    std::sort(values.begin(), values.end(), [](int a, int b)
    {
            if (a == 1)
                return false;
            if(b == 1)
                return true;
            return a < b;   //2 3 4 5 1
    });
    for (int value : values)
    std::cout << value << std::endl;
    std::cin.get();
}

random_shuffle

功能描述:

  • 洗牌 指定范围内的元素随机调整次序

函数原型:

  • random_shuffle(iterator beg, iterator end); // 指定范围内的元素随机调整次序 // beg 开始迭代器 // end 结束迭代器

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <algorithm>
#include <vector>
#include <ctime>

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	srand((unsigned int)time(NULL));
	vector<int> v;
	for(int i = 0 ; i < 10;i++)
	{
		v.push_back(i);
	}
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;

	//打乱顺序
	random_shuffle(v.begin(), v.end());
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;
}

总结: random_shuffle 洗牌算法比较实用,使用时记得加随机数种子

merge

功能描述:

  • 两个容器元素合并,并存储到另一容器中

函数原型:

  • merge(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest); // 容器元素合并,并存储到另一容器中 // 注意: 两个容器必须是有序的 // beg1 容器 1 开始迭代器 // end1 容器 1 结束迭代器 // beg2 容器 2 开始迭代器 // end2 容器 2 结束迭代器 // dest 目标容器开始迭代器

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <algorithm>
#include <vector>

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector<int> v1;
	vector<int> v2;
	for (int i = 0; i < 10 ; i++) 
    {
		v1.push_back(i);
		v2.push_back(i + 1);
	}

	vector<int> vtarget;
	//目标容器需要提前开辟空间
	vtarget.resize(v1.size() + v2.size());
	//合并  需要两个有序序列
	merge(v1.begin(), v1.end(), v2.begin(), v2.end(), vtarget.begin());
	for_each(vtarget.begin(), vtarget.end(), myPrint());
	cout << endl;
}

总结: merge 合并的两个容器必须的有序序列

reverse

功能描述:

  • 将容器内元素进行反转

函数原型:

  • reverse(iterator beg, iterator end); // 反转指定范围的元素 // beg 开始迭代器 // end 结束迭代器

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
#include <algorithm>
#include <vector>

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector<int> v;
	v.push_back(10);
	v.push_back(30);
	v.push_back(50);
	v.push_back(20);
	v.push_back(40);

	cout << "反转前: " << endl;
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;

	cout << "反转后: " << endl;

	reverse(v.begin(), v.end());
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;
}

常用拷贝和替换算法

法简介:

  • copy // 容器内指定范围的元素拷贝到另一容器中
  • replace // 将容器内指定范围的旧元素修改为新元素
  • replace_if  // 容器内指定范围满足条件的元素替换为新元素
  • swap // 互换两个容器的元素

copy

功能描述:

  • 容器内指定范围的元素拷贝到另一容器中

函数原型:

  • copy(iterator beg, iterator end, iterator dest); // 按值查找元素,找到返回指定位置迭代器,找不到返回结束迭代器位置 // beg 开始迭代器 // end 结束迭代器 // dest 目标起始迭代器

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#include <algorithm>
#include <vector>

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector<int> v1;
	for (int i = 0; i < 10; i++) {
		v1.push_back(i + 1);
	}
	vector<int> v2;
	v2.resize(v1.size());
	copy(v1.begin(), v1.end(), v2.begin());

	for_each(v2.begin(), v2.end(), myPrint());
	cout << endl;
}

总结: 利用 copy 算法在拷贝时,目标容器记得提前开辟空间

replace 按值替换

功能描述:

  • 将容器内指定范围的旧元素修改为新元素

函数原型:

  • replace(iterator beg, iterator end, oldvalue, newvalue); // 将区间内旧元素 替换成 新元素 // beg 开始迭代器 // end 结束迭代器 // oldvalue 旧元素 // newvalue 新元素

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <algorithm>
#include <vector>

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector<int> v;
	v.push_back(20);
	v.push_back(30);
	v.push_back(20);
	v.push_back(40);
	v.push_back(50);
	v.push_back(10);
	v.push_back(20);

	cout << "替换前:" << endl;
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;

	//将容器中的20 替换成 2000
	cout << "替换后:" << endl;
	replace(v.begin(), v.end(), 20,2000);
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;
}

总结: replace 会替换区间内满足条件的元素

replace_if 按条件替换

功能描述:

  • 将区间内满足条件的元素,替换成指定元素

函数原型:

  • replace_if(iterator beg, iterator end, _pred, newvalue); // 按条件替换元素,满足条件的替换成指定元素 // beg 开始迭代器 // end 结束迭代器 // _pred 谓词 // newvalue 替换的新元素

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <algorithm>
#include <vector>
class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};
class ReplaceGreater30
{
public:
	bool operator()(int val)
	{
		return val >= 30;
	}
};
void test01()
{
	vector<int> v;
	v.push_back(20);
	v.push_back(30);
	v.push_back(20);
	v.push_back(40);
	v.push_back(50);
	v.push_back(10);
	v.push_back(20);

	cout << "替换前:" << endl;
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;

	//将容器中大于等于的30 替换成 3000
	cout << "替换后:" << endl;
	replace_if(v.begin(), v.end(), ReplaceGreater30(), 3000);
	for_each(v.begin(), v.end(), myPrint());
	cout << endl;
}

总结: replace_if 按条件查找,可以利用仿函数灵活筛选满足的条件

swap

功能描述:

  • 互换两个容器的元素

函数原型:

  • swap(container c1, container c2); // 互换两个容器的元素 // c1 容器 1 // c2 容器 2

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <algorithm>
#include <vector>
class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector<int> v1;
	vector<int> v2;
	for (int i = 0; i < 10; i++) {
		v1.push_back(i);
		v2.push_back(i+100);
	}

	cout << "交换前: " << endl;
	for_each(v1.begin(), v1.end(), myPrint());
	cout << endl;
	for_each(v2.begin(), v2.end(), myPrint());
	cout << endl;

	cout << "交换后: " << endl;
	swap(v1, v2);
	for_each(v1.begin(), v1.end(), myPrint());
	cout << endl;
	for_each(v2.begin(), v2.end(), myPrint());
	cout << endl;
}

总结: swap 交换容器时,注意交换的容器要同种类型

常用算术生成算法

注意:

  • 算术生成算法属于小型算法,使用时包含的头文件为 #include <numeric>

算法简介:

  • accumulate // 计算容器元素累计总和
  • fill // 向容器中添加元素

accumulate

功能描述:

  • 计算区间内 容器元素累计总和

函数原型:

  • accumulate(iterator beg, iterator end, value); // 计算容器元素累计总和 // beg 开始迭代器 // end 结束迭代器 // value 起始值

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <numeric>
#include <vector>
void test01()
{
	vector<int> v;
	for (int i = 0; i <= 100; i++) {
		v.push_back(i);
	}

	int total = accumulate(v.begin(), v.end(), 0);

	cout << "total = " << total << endl;
}

总结: accumulate 使用时头文件注意是 numeric,这个算法很实用

fill

功能描述:

  • 向容器中填充指定的元素

函数原型:

  • fill(iterator beg, iterator end, value); // 向容器中填充元素 // beg 开始迭代器 // end 结束迭代器 // value 填充的值

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <numeric>
#include <vector>
#include <algorithm>
class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};
void test01()
{

	vector<int> v;
	v.resize(10);
	//填充
	fill(v.begin(), v.end(), 100);

	for_each(v.begin(), v.end(), myPrint());
	cout << endl;
}

总结: 利用 fill 可以将容器区间内元素填充为指定的值

常用集合算法

算法简介:

  • set_intersection // 求两个容器的交集
  • set_union // 求两个容器的并集
  • set_difference  // 求两个容器的差集​

set_intersection 交集

功能描述:

  • 求两个容器的交集

函数原型:

  • set_intersection(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest); // 求两个集合的交集 // 注意: 两个集合必须是有序序列 // beg1 容器 1 开始迭代器 // end1 容器 1 结束迭代器 // beg2 容器 2 开始迭代器 // end2 容器 2 结束迭代器 // dest 目标容器开始迭代器

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <vector>
#include <algorithm>

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector<int> v1;
	vector<int> v2;
	for (int i = 0; i < 10; i++)
    {
		v1.push_back(i);
		v2.push_back(i+5);
	}

	vector<int> vTarget;
	//取两个里面较小的值给目标容器开辟空间
	vTarget.resize(min(v1.size(), v2.size()));

	//返回目标容器的最后一个元素的迭代器地址
	vector<int>::iterator itEnd = 
        set_intersection(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());

	for_each(vTarget.begin(), itEnd, myPrint());
	cout << endl;
}

总结:

  • 求交集的两个集合必须的有序序列
  • 目标容器开辟空间需要从两个容器中取小值
  • set_intersection 返回值既是交集中最后一个元素的位置

set_union 并集

功能描述:

  • 求两个集合的并集

函数原型:

  • set_union(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest); // 求两个集合的并集 // 注意: 两个集合必须是有序序列 // beg1 容器 1 开始迭代器 // end1 容器 1 结束迭代器 // beg2 容器 2 开始迭代器 // end2 容器 2 结束迭代器 // dest 目标容器开始迭代器

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <vector>
#include <algorithm>

class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};

void test01()
{
	vector<int> v1;
	vector<int> v2;
	for (int i = 0; i < 10; i++) {
		v1.push_back(i);
		v2.push_back(i+5);
	}

	vector<int> vTarget;
	//取两个容器的和给目标容器开辟空间
	vTarget.resize(v1.size() + v2.size());

	//返回目标容器的最后一个元素的迭代器地址
	vector<int>::iterator itEnd = 
        set_union(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());

	for_each(vTarget.begin(), itEnd, myPrint());
	cout << endl;
}

总结:

  • 求并集的两个集合必须的有序序列
  • 目标容器开辟空间需要两个容器相加
  • set_union 返回值既是并集中最后一个元素的位置

set_difference 差集

功能描述:

  • 求两个集合的差集

函数原型:

  • set_difference(iterator beg1, iterator end1, iterator beg2, iterator end2, iterator dest); // 求两个集合的差集 // 注意: 两个集合必须是有序序列 // beg1 容器 1 开始迭代器 // end1 容器 1 结束迭代器 // beg2 容器 2 开始迭代器 // end2 容器 2 结束迭代器 // dest 目标容器开始迭代器

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#include <vector>
#include <algorithm>
class myPrint
{
public:
	void operator()(int val)
	{
		cout << val << " ";
	}
};
void test01()
{
	vector<int> v1;
	vector<int> v2;
	for (int i = 0; i < 10; i++) {
		v1.push_back(i);
		v2.push_back(i+5);
	}

	vector<int> vTarget;
	//取两个里面较大的值给目标容器开辟空间
	vTarget.resize( max(v1.size() , v2.size()));

	//返回目标容器的最后一个元素的迭代器地址
	cout << "v1与v2的差集为: " << endl;
	vector<int>::iterator itEnd = 
        set_difference(v1.begin(), v1.end(), v2.begin(), v2.end(), vTarget.begin());
	for_each(vTarget.begin(), itEnd, myPrint());
	cout << endl;

	cout << "v2与v1的差集为: " << endl;
	itEnd = set_difference(v2.begin(), v2.end(), v1.begin(), v1.end(), vTarget.begin());
	for_each(vTarget.begin(), itEnd, myPrint());
	cout << endl;
}

总结:

  • 求差集的两个集合必须的有序序列
  • 目标容器开辟空间需要从两个容器取较大值
  • set_difference 返回值既是差集中最后一个元素的位置

其他

std::async

std::async 是 C++11 标准中引入的一个函数,它用于异步执行一个任务。简而言之,std::async 创建一个新的线程(或从线程池中获取一个线程)来执行传递给它的函数或可调用对象,并且同时返回一个 std::future 对象,你可以通过这个 std::future 对象来获取异步任务的结果。

当你调用 std::async 时,你可以选择一个启动策略,比如 std::launch::asyncstd::launch::deferred,或者可以默认不选择,让实现选择最合适的策略:

  • ` Std::launch::async ` 保证任务会在一个新的线程上异步执行。
  • Std::launch::deferred 表示任务会延迟到对 std::future 对象调用 .get().wait() 方法时同步执行。
  • 如果不指定策略,则实现会选择是异步执行还是延迟执行。

示例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include "stdafx.h"
#include "stdasync.h"
#include <future>

int upload_image() {
    // 休眠5秒 , 模拟操作
    std::this_thread::sleep_for(std::chrono::seconds(1));
	return 0;
}

void stdasync::testStdSync()
{
    // Start function asynchronously (potentially in a new thread)
    std::future<int> result = std::async(upload_image);

    // Do something else while the function is executing in another thread...

    // Wait for the function to finish and retrieve the result
    std::cout << "upload_image: " << result.get() << std::endl;
}

使用 std::async 可以简化多线程代码的编写,并使任务的启动和结果的检索变得更加容易。然而,需要注意的是,过度使用 std::async 可能会导致程序创建大量线程,而这可能会降低性能,所以其使用应该结合程序的具体需求来决定。在 C++11 及以后的标准中,std::async 是首选的并发编程工具之一。

std::memset

在 C++ (以及 C) 中,memset 是一个来自 <cstring> (在 C 中是 <string.h>) 标准库的函数,用于将一块内存区域设置为特定的字节。

memset 的原型如下:

1
void* memset( void* ptr, int value, std::size_t num );

参数:

  • ptr:指向要填充的内存块的指针。
  • value:要设置的字节的值。虽然这个参数的类型是 int,但是 memset 实际上会将它转换为一个无符号字符,并将这个字符复制到指定的内存块中。
  • num:要设置的字节数。

返回值:

  • memset 返回指向内存块起始位置的指针。

示例用法:

1
2
3
4
5
6
7
8
9
10
11
#include <cstring>
int main() {
    char buffer[10];

    // 将 buffer 的每个字节设置为 ASCII 字符 'A'
    memset(buffer, 'A', sizeof(buffer));

	// 初始化数组
	memset(data.getData(), 0, data.size() * sizeof(int));
    return 0;
}

这将导致 buffer 数组的每个元素都被设置为字符 ‘A’。

需要特别注意的是,memset 用一个字节的值填充内存区域,因此它主要适用于字符数组或其他原始数据类型的数组。如果你尝试使用 memset 来设置复合类型(如有构造函数的类对象)的数组,可能会导致未定义的行为,因为 memset 不知道类的构造和析构。

由于 memset 对于非 POD(Plain Old Data) 类型可能不安全,C++11 引入了 std::fillstd::fill_n 等算法用于更安全、可靠地填充数组或容器的元素,特别是当数组或容器包含有复杂构造函数或者析构函数的对象时。例如,std::fill 可用于填充 std::vector 的元素。

使用 memset 应始终注意内存覆盖问题,确保不要超过目标内存块的界限,因为这可能导致内存损坏和安全漏洞。

本文由作者按照 CC BY 4.0 进行授权